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Analyzing memory effects of complex systems from time series
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A numerical algorithm is presented in order to determine all coefficients of the Mori-Zwanzig equation from
a given finite time series. The algorithm is applicable to observables of arbitrary complex systems. Meteoro-
logical and financial systems are investigated. By analyzing directional variables and amplitudes we are able to
observe and discuss memory effects on different time scales. We show that analyzing the memory kernel
provides important insights into the dynamics of a complex system.
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I. INTRODUCTION

Time series analysis [1,2] is an important tool used to
characterize complex systems in physical research. Current
investigations focus on rare events [3,4], the long-term be-
havior of correlation functions [5,6], and anomalous phe-
nomena in the distribution of detrended fluctuations [7].
Through several numerical and analytical approaches in time
series analysis, we strive to understand and classify climate
evolution [8], river runoff and temperature records [9], medi-
cal electrocardiogram (ECG) and electroencephalogram
(EEG) signals [10], financial markets [11,12], and DNA and
protein sequences [13].

An important property of many complex systems is the
large amount of degrees of freedom. Examples range from
granular material, and the earth climate, to man-made sys-
tems, such as traffic in urban environments, computer net-
works, and markets. Despite the fact that all objects involved
in these systems obey known physical laws, for a variety of
reasons, we are often unable to solve these problems. The
reasons behind this are twofold. First, we cannot measure all
degrees of freedom of most complex systems. Second, even
if we were able to measure all degrees of freedom, in most
cases, there are too many. Such that even the biggest super
computer could not calculate their evolution. Interestingly
enough, we are not even primarily interested in all degrees of
freedom, but rather in only very few “relevant” observables.

Classical time series analysis often assumes a so-called
component model for the relevant observables. In any com-
ponent model, one assumes that there is a deterministic com-
ponent and a stochastic component. The deterministic com-
ponent often contains a monotone term named trend and
periodic terms, which are often called seasonal or cyclic
terms. The person who develops a specific component model
empirically incorporates the available information about the
system in the deterministic component. Therefore, the prin-
cipal of minimal information [14] is applied to the stochastic
component, which leads to the interpretation of noise. Con-
sequently, the concurrent strength and weakness of classical
time series analysis is that the deterministic component, the
model, is empirically chosen based on the experience of the
person committing the analysis. The subjective nature of this
part of the analysis turns it into more of an art than science.

"There are also low-dimensional systems that exhibit complex be-
havior, i.e., Sinai billiard.
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The multiscale method [15] is a well-established tech-
nique to systematically treat systems with slow and fast com-
ponents. Our method however focuses on the separation of
internal and external dynamics based on a projection formal-
ism.

Mori-Zwanzig (MZ) theory [16—18] provides a projection
formalism to obtain exact equations of motion for the rel-
evant observables only. The dynamics of all other “irrel-
evant” degrees of freedom are hidden in so-called memory
kernels and sometimes fast fluctuating residual forces. Thus,
memory can be expected for any observable in a complex
system where variables® are projected out. Although there are
other projection formalisms [19-21] leading to different
equations, the Mori-Zwanzig equation (MZE) is the only lin-
ear integrodifferential equation. Its functional structure is in-
dependent of the considered complex system.

In this paper, we present an algorithm to determine the
empirical MZ equation from one finite time series of one
relevant observable.” The fact that we do not need any infor-
mation about the dynamics of the complex system, apart
from approximate stationarity, makes it applicable to almost
any complex system.

Together with the mastering technique, our method is ca-
pable of resolving the detailed memory kernel over a wide
range of timescales. Compared to detrended fluctuation
analysis (DFA) [22] we do not assume power-law correla-
tions. On the other hand, DFA is more robust when nonsta-
tionarity is involved. The idea of a memory term is also
common to the family of autoregressive moving average
(ARMA), autoregressive integrated moving average
(ARIMA), fractal autoregressive integrated moving average
(FARIMA), etc., models [23]. These models usually assume
uncorrelated Gaussian noise. This makes them easier to
implement, but inconsistent with the microscopic equations
of motion, from which the MZ equation is derived.

II. MORI-ZWANZIG-THEORY

The Mori-Zwanzig theory [16] provides a projection for-
malism to obtain evolution equations of relevant observables
only.

’In most cases the majority of the variables are projected out.
Besides relaxation, the one-dimensional case also allows oscilla-
tionlike behavior.
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FIG. 1. (Color online) Ornstein-Uhlenbeck process. (a) The au-
tocorrelation function, (x|x) decays exponentially. (b) The memory
kernels K, and 1?, show Markovian behavior. The frequency coeffi-
cient is Q=Ky—K,=0.10039.

Let {G} be a set of relevant observables, G,(1) («
=1,...,M). All observables, G,(t), are linearly independent,
differentiable functions of the microscopic state T’
={q,...qn.pl,...,py}. Then, the time evolution of G (z) is
given by the Mori-Zwanzig (MZ) equation

dG (1) Y [QayGy(t)—f dt’kay(f—l,)Gy(t,):|
dt y 1o

+ falt,1p). (1)
The most general form of the memory kernel is

K ay(t, t',ty), where the system was last observed at the initial
time #,. The dependence of ¢ and ¢’ reduces to r—¢" if the
system is embedded in a time-independent environment.
Without loss of generality, Eq. (1) becomes autonomous”
since the microscopic equations of motion that it was derived
from can always be made autonomous by choosing a large
enough system.

In Eq. (1), we further assume that the complex system is
stationary. This is reasonable following the principle of Oc-

*Autonomous means that an equation does not depend on time-
dependent external forces or fields or time-dependent boundary
conditions.
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FIG. 2. (Color online) Changes in wind strength. (a) Autocorre-

lation function, (x|x). (b) Memory kernel, K, and K,, of the wind
strength changes. The diamond at =0 in the main plot is K, and the
circle is I?O. Q:I?O—Kozl.ll. Both the autocorrelation function
and the memory kernel observe clearly visible 12 h and, especially,
24 h periods. K, and I?t are calculated in two different ways (see
Sec. I1I) and perfectly agree for t € [1,...,n]. This confirms relation
(4) (see text for details).

cam’s Razor since it is impossible to decide if it is stationary
or not based on one finite realization of the system. Because
of stationarity the #, dependence in the memory kernel van-
ishes.

Although the MZ equation (1) is still exact, only in very
special and simple systems one can derive the coefficients
from the microscopic equations of motion (for example, Ref.
[24]). As an approximation one substitutes the rest force
terms, f,(¢,1,), with a stochastic process that obeys Egs. (2)
and (4). That is why f,(¢,,) are often called noise terms.

At the point in time, f#j, there is full and secure informa-
tion about G,(t,); thus, we know the initial condition of the
relevant observables G,(ty))=Gp,- It is worth mentioning
that, in general, the rest force terms, f,(z, 1), are completely
different for different f, since the microscopic initial condi-
tions vary as well (even if G, happens to be equal).

By adding a constant to G,(f), one can always make the
ensemble average over the noise term vanish

<fa(ts t0)>t0 =0. (2)

The following identities apply:
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FIG. 3. (Color online) Cumulated memory kernel Q, of the wind
strength changes. The horizontal line was fitted to Q, in the interval
t €[500,1000] The elementary time unit is 1 h.

(G4lto) |fa(t7t0)>10 =0 (3)

E Ho i, 1)l 1001, = Koy D), )

where Hﬂ;:(Gy(tO) | Ggltp)),, (see Ref. [25]).

On the other hand, identity (4) can be derived solely from
the functional structure of Eq. (1) and the assumption that
Eq. (3) holds. In this case, it is not necessary to use any
projection formalism. We remark that linear models with
memory but without identity (4) were presented in the litera-
ture [26].

Because of the identity (3) it is possible to obtain a similar
equation for the autocorrelation function, cGaGB(t)

=(G4(1)] Gglto))

deg Gg(t)

dt 2 [ ozycG G (t) f dar’ Kay(t CG G (t)

(5)

In case of only one relevant observable, Eq. (5) simplifies to

dege(t e

%:Qcmm- f dt'K(t—1")egolt'). (6)
1,

The problem now is to determine the coefficients, (), I?(t

—t"), and f(t,t,) from one finite time series.

III. ALGORITHM

In this section, the aim is to develop a numerical algo-
rithm that determines the coefficients of the MZ equation,
given a time series x, of a relevant observable under the
assumption of stationarity. The time series is assumed to be
discrete in time. This is no limitation, since measured time
series are always discrete and sometimes may approximate a
continuous process.

Equation (6) serves as a convenient starting point since
the noise term, f,(), was eliminated through averaging. Nu-
merically, the autocorrelation function cg(f) can be esti-
mated in the following way:
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FIG. 4. (Color online) Changes in wind direction, ¢. (a) Auto-
correlation function, (¢|#). (b) Memory kernels K, and K,, of the
wind direction changes. The diamond at /=0 in the main plot is K

and the circle is I?O. Q:I?O—Koz 1.131. The elementary time unit is
1 h.

N-t-1

o=y =7 2 (5= ()= (0

where we used the assumption of stationarity.5
In order to numerically treat Eq. (6), we choose a corre-
sponding time-ordered discrete version

-1

codlt] = coelt—11=- 2 K-i-ncoalils (7)
i=0

where () is part of K. Equation (7) can easily be solved for
K..

In order to separate the frequency () from K, and to check
whether the memory kernel K, was determined consistently,
we use the relation (4).

The MZ equation in a time-ordered discrete form is given
by

5Stationarity in the sense that ensemble average is equal to the
time average.
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FIG. 5. (Color online) Cumulated mastered memory kernel

?‘“‘ered of the wind direction changes. The vertical lines indicate

1,2,...,4 yr. The master technique is explained in Sec. IV B. The
elementary time unit is 1 h.

-1
A =xlt=1]== 2 Kmpplil+ £, [1-11. (8)
i=t)
Therefore, f,o[t—to] can be calculated from the known time
series, x[¢] in the following way:

-1

Fult=tol =alt = to+ 1= xlt= 1]+ = Ky il (9)
i=tq
It is important to point out that 7, is the point in time where
the value of the relevant observable is known. Even though
stationarity of the time series x, ensures that one can substi-
tute ensemble averaging by time averaging we still have a
completely different noise term, f;o[f—fo], for every initial
time #.
The discrete version of relation (4) then reads

1

K, = m(fzo[to] lfzo[t - t0]>t0’ (10)

where (x*)(0) is the variance of the time series and (---),0
denotes that the average is taken over f,,.

Ideally, K, and K, , are equal except for the first element K|,
and I?O. The frequency () can be obtained from

6500
6000
5500
5000
4500
4000
3500
3000
2500

0.050

T T T T T =]
w  0.000 b .%-%% el

—0.050 |-
0x 10°

1x10° 2x10° 3x10° 4x10° 5x10° 6 x10°
t (min)
FIG. 6. (Color online) DAX time series. Minute data from 13:59
16.02.2001 to 19:37 21.02.2005.
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FIG. 7. (Color online) DAX volatility. (a) Autocorrelation func-
tion, (V| V). (b) Memory kernels K, and I?t. The diamond at =0 in

the main plot is K, and the circle is EO. Q:I?O—K0=O.497. The
elementary time unit is 1 min.

Q=E0—K0. (11)

IV. APPLICATIONS/RESULTS
A. Artificial data

In this instance, we use an Ornstein-Uhlenbeck (OU) pro-
cess (12) to check our algorithm
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FIG. 8. (Color online) Cumulated memory kernel Q, of the
DAX volatility. The elementary time unit is 1 min.
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FIG. 9. (Color online) Master plots of cumulated memory kernels of the absolute logarithmic price changes V form different stock
indices. Insets show a close-up of the oscillations. Vertical lines indicate 1, 2, 3, and 4 days. (a) Mastered cumulated memory kernel Q, of
the DAX. (b) Mastered cumulated memory kernel Q, of the MICEX. (c) Mastered cumulated memory kernel Q, of the FTSE. (d) Mastered
cumulated memory kernel Q, of the NASDAQ. Note that hours traded per day are different for each stock exchange. The master technique
is analog to the one used in Fig. 5 (see text for details). The elementary time unit is 1 min.

dx(t)
dt

=Qopx(r) + W(r). (12)
We generate 500 000 data points with Q,;,=-0.1 and a stan-
dard Gaussian distributed W(z). In terms of the MZ equation,
the equation reads

dx—(t)zﬂx

(1) - f tl?(t —x(t)dt' + W(1)
dt 0

=— ftK(z— t")x(¢")dt’ + W(r). (13)

0
Since the asymptotic variance is <x2>=—ﬁ0y, we expect K|
=0.1 and K,= <):—2>(W2)=2 X Qpy X 1=0.2. This is in perfect
agreement with Fig. 1(b).
Figure 1(a) shows the exponential decay of the autocorre-

lation function. In Fig. 1(b) the memory kernels K, and I?, are
plotted. The frequency matrix in Eq. (13) is correctly esti-
mated, {2=0.100 39, which leads to ,;=-0.099 61.

B. Physical time series

In this section, we analyze wind data since the atmosphere
is a macroscopic system with a high degree of complexity.

Our observables are wind strength v and wind direction  at
Potsdam, Germany, starting from January 1, 1893 to April
30, 1999 for every hour of the day [27]. This data set was
analyzed in Ref. [28] to find logarithmic corrections to the
mean square displacement, considering the wind vector to
describe a two-dimensional random walk.

We abstain from any form of detrending since our aim is
to analyze the memory kernel of the original data. Let us
analyze the memory kernel K, of the changes in wind
strength, x;

(14)

X =U0;— Vs q.

In Fig. 2(a), the autocorrelation function of x, is shown. Fig-
ure 2(b) shows the corresponding memory kernels, K, and K,.

It is important to point out that even though K, and Et have
been calculated in two different ways (see Sec. III) they per-
fectly agree for t €[1,...,200]. Thus, the relation (4) holds.

Here, we used a stochastic integrodifferential equation
with memory of type (1) to describe the dynamics of a rel-
evant observable, namely, wind strength changes. Assuming
identity (3), we verified the relation (4) as a necessary con-
sequence.

In Fig. 2(b) 12 h and, in particular, 24 h periods are
clearly visible. Since the memory kernel K, contributes nega-
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FIG. 10. (Color online) Short-term memory kernel K, of the
sgn(€) of the DAX. The elementary time unit is 1 min.

tively to changes of x,, certain changes in wind strength
make it more likely to experience the same changes, 12 h
and, particularly, 24 h later. Similar periods are obtained by
analyzing the wind strength instead of the change in wind
strength.

In Fig. 3, the cumulated memory kernel Q,=3!_K; of the
changes in wind strength are plotted. After ~240 h or 10
days the cumulated memory kernel saturates, which means
that after ~10 days, the wind strength changes show Mar-
kovian behavior. The saturation level of ~2 h™! can be in-
terpreted as an effective viscous friction in the system as in
an Ornstein-Uhlenbeck process. As a result of friction, wind
speeds, on average, do not get stronger over time as one
would expect from a diffusive process.

Next we investigate wind direction changes. If we assume
that the wind does not change more than 7 within 1 h, we
can define the wind direction changes according to

a=i— i,
a-2m, a>1T
b =Va+2m, a<-m (15)
a, otherwise.

In Fig. 4, the autocorrelation function, (¢|¢), and the
memory kernel K, of the wind direction changes is plotted.

In contrast to the memory kernel of changes in wind
strength, up to 96 h, there is little periodic structure in the
memory kernel for wind direction changes. There is a slight
overshooting into the negative domain, which then slowly
creeps back to zero.

If we calculate the memory kernel K, of the changes in
wind direction for larger time lags ¢ the result is very noisy.
Smoothing and filter techniques do not produce convincing
results. Thus, in order to investigate long-term memory we
use the master technique, which is a standard procedure used
to match observables on different time scales [29].

We coarse grain the changes in wind direction ¢, by tak-
ing the arithmetic average of adjacent nonoverlapping win-
dows of length n. These new values, ¢,,,, are now the aver-
age wind direction change in this time window. The fact that
the averaging windows do not overlap is important in order
to not introduce artificial correlations. Next we calculate

PHYSICAL REVIEW E 73, 056204 (2006)

the memory kernel, KE"), from ¢, for n
e{1,2,4,8,16,...,2048}. Then plot the cumulated memory
kernel, Q(") P OK < into one master plot (Fig. 5). For more
clearly arranged plots, the beginning and end part of Q
€{2,4,...,2048} are omitted.

The mastered cumulated memory, Q;")=E§=0K§"), of the
wind direction changes in Fig. 5 decays to a first minimum at
~1536 h. At ~1 yr, the negative value of Q"““S‘ered indicates
a repulsive memory effect. The oscillations can be explained
through the seasonal dependence of the dominating wind di-
rection.

C. Financial time series

In this section we analyze minute data from the DAX
(Fig. 6).° Let x, be the closing prices of each 1 min time
interval. Periods in which no trading took place are cut out.
As a result, overnight intervals or holidays, for example, are
also treated as a 1 min bin. We found that the following
results are robust to the exclusion of overnight intervals or
the exclusion of afterhour trading data. Next, we define the
common logarithmic price changes defined in

&= n——lnx,—]nx, 1 (16)
Xi-1

The correlation time of logarithmic price changes ¢, in liquid
markets has decreased over the last centuries [30] and is
usually in the order of the time resolution. Thus, in terms of
the efficient market hypothesis, existing correlations would
immediately be exploited by trades to earn money and would
therefore vanish. It is usually impossible to resolve a detailed
structure in the autocorrelation function, (£|£), of logarith-
mic price changes. Therefore, we analyze the absolute value,
V=|£|, as a measure of volatility and the sign, sgn(£,), of the
logarithmic price changes &, separately,

&= |§,|Sgn(§,). (17)

We defined the sgn(x) function in a completely symmetric
way

1, x>0
sgn(x) =10, x=0 (18)
-1, x<0.

Using the algorithm described above, we can find the
memory kernel and the frequency of the MZ equation, and in
this way, describe the evolution of the absolute logarithmic
price changes V. Figure 7 shows the autocorrelation function
and the memory kernel of the absolute logarithmic price
changes on the minute time scale. It is well known that the
autocorrelation function of the volatility is long-range corre-
lated [31]. We see long-range correlations as well, but here
we focus on the analysis of the memory kernel in the mod-
erate time regime.

In Fig. 7(b), we use the difference between K, and K, to
determine the frequency, 1=0.496 782 1. Besides for =0,

®Data obtained from http://www.fin-rus.com/analysis/export/-
eng-/default.asp [32].
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FIG. 11. (Color online) Cumulated memory Q, of the sgn(¢) from different stock indices. In order to estimate a typical time scale where
memory effects exist, an exponential function was fitted. The elementary time unit is 1 min. (a) Cumulated memory of the sgn(£) of the
DAX, b=1350 min=2.04 days. (b) Cumulated memory of the sgn(¢) of the MICEX, b=2114 min=4.27 days. (c) Cumulated memory of the
sgn(§) of the FTSE, h=3997 min=7.4 days. (d) Cumulated memory of the sgn(&) of the NASDAQ, »=2712 min=6.95 days. Note that

hours traded per day are different for each stock exchange.

K, and I?t cannot be distinguished. The absolute square dif-

ference of K, and K,, re1,2,..,100, is 1.85X 107'0. This
shows again that relation (4) holds our algorithm works con-
sistently.

When the memory kernel K, is very small for times larger
than 20 min, erratic fluctuations make it hard to decide if
there is a significant difference from zero. Hence, analyzing
the cumulated memory kernel Q, is helpful since systematic
differences from zero accumulate. Furthermore, the cumu-
lated memory kernel can be interpreted as a viscous friction
coefficient in the sense of a Markov approximation of the
MZ equation.

Figure 8 shows the cumulated memory kernel. Interest-
ingly, the cumulative memory kernel almost vanishes after
~30 min, meaning that if we look at longer time scales, V
seems to diffuse freely.

In order to obtain the memory kernel for larger time lags
we again use the master technique discussed in Sec. IV B.
The masterplots (Fig. 9) contain the cumulated memory ker-
nels, Q" for n e {1,2,4,8,16,32,64,128,256}.

The master technique works very well for the volatility of
a variety of different stock indices (Fig. 9). Generally, one
observes that the cumulated memory kernel decays to almost
zero within half an hour. Oscillations then start again on the
daily timescale. Negative peaks indicating driving effects oc-
cur for time lags of multiples of one trading day. The pattern

between one and two trading days is very similar to the pat-
tern between two and three trading days, etc. However, daily
patterns do differ from stock index to stock index. For very
large time lags, the envelope of these oscillations becomes
narrower. Hence, the system “forgets.”

Let us now investigate the sign of the logarithmic price
changes, sgn(&). Looking at the memory kernel of the sgn(&)
from the DAX in Fig. 10, one clearly recognizes that the first
17 data points are above zero. The price dynamic seems to
“remember” the sign of the price change for at least 17 min.
For larger time lags, the impression that most of the points
are below zero (repulsive memory) can more clearly be seen
when K, is accumulated [Fig. 11(a)].

To investigate longer-lasting memory effects in the dy-
namics of the sign, we look at the accumulated memory ker-
nel, Q,==!_(K; in Fig. 11. All accumulated memory kernels
decay nicely. In order to estimate a rough time scale, we
fitted them with an exponential decay. Surprisingly, we find
that apart from the short time behavior (~17 min) discussed
above memory effects of 2—7 days are present in the dynam-
ics of the sign.

V. CONCLUSIONS

In this paper, we presented an algorithm to empirically
determine all components of a Mori-Zwanzig equation for
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one observable of a complex system from one time series.
For a complex system, this is usually the only accessible
realization of the process. The generalization of the algo-
rithm to the multivariate case is always possible and will be
presented in a subsequent paper.

The algorithm was applied to wind data and the financial
data of major stock indices. In both cases we analyzed direc-
tional variables and amplitudes. The directional variable in
the case of the wind data is direction change and in the case
of the financial data, the sign of the price fluctuation. The
amplitude in the case of the wind data is the change in wind
strength. In the case of the financial data, it is the volatility.

The memory kernel of the wind strength changes shows
very distinct half-day and, especially, daily periods. The ac-
cumulated memory suggests a finite generalized dissipative
force, which prevents diffusive behavior and, therefore,
larger and larger wind speeds over time.

The memory kernel of the wind direction changes has
little periodic structure on the daily time scale. The mastered
accumulated memory reveals seasonal structure. We find the
daily wind dynamics in the wind strength and seasonal dy-
namics in the wind direction. Qualitatively, this demonstrates
the everyday experience of stronger winds in the mornings
and evenings, more westerly winds in the summer, and east-
erly winds in the winter in central Europe.

PHYSICAL REVIEW E 73, 056204 (2006)

For financial time series, the memory kernel of the vola-
tility is pronounced at short time scales (~10 min). For in-
termediate time lags (up to 0.5 trading days), it is approxi-
mately zero. In contrast, we observe daily periods up to 10
trading days characterizing the long-term behavior of the
memory. The fact that the daily oscillations decay for longer
time lags indicates that the numerical truncating error and the
finite length of the time series have not yet taken over.

Another surprising result is that apart from the fast short-
time decay of the memory kernel of the signs, we find an
additional long-range decay in the order of several trading
days. As expected, shuffling of the original data sets results
in vanishing memory effects. The results for the financial
data were found to be robust to the exclusion of overnight
intervals and the exclusion of afterhour trading data.

In principle, the presented algorithm can be applied to a
wide range of time series. We demonstrated that the analysis
of the memory kernels is an alternative method apart from
the standard analysis of correlation functions, which often
leads to different insight into the dynamics of complex sys-
tems.
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